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Abstract

We study the problem of how to build a deep learning representation for 3D
shape. Deep learning has shown to be very effective in variety of visual appli-
cations, such as image classification and object detection. However, it has not
been successfully applied to 3D shape recognition. This is because 3D shape
has complex structure in 3D space and there are limited number of 3D shapes
for feature learning. To address these problems, we project 3D shapes into 2D
space and use autoencoder for feature learning on the 2D images. High accuracy
3D shape retrieval performance is obtained by aggregating the features learned
on 2D images. In addition, we show the proposed deep learning feature is com-
plementary to conventional local image descriptors. By combing the global deep
learning representation and the local descriptor representation, our method can
obtain the state-of-the-art performance on 3D shape retrieval benchmarks.

Keywords: 3D Shape Matching, 3D Shape Retrieval, Autoencoder, Shape
Representation

1. Introduction1

With the fast development of 3D printer, Microsoft Kinect sensor and laser2

scanner, etc., there are more and more digitized 3D models that need to be3

recognized. Thus it is critical to study how to build an efficient 3D shape search4

engine. However, due to the intrinsic complex structure of 3D shape, it is hard5

to handle 3D shape using a simple representation for efficient search.6

Along with the development of computer vision and machine learning, deep7

learning methods have been proven to be very effective for visual recognition.8

For example, deep convolutional neural network (CNN) [1] has achieved the9

state-of-the-art performance for object recognition on the ImageNet dataset [2]10

and for object detection on the PASCAL dataset [3]. One reason of the success11
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of deep learning for visual recognition is that the deep learning methods can au-12

tomatically learn the features with the superior discriminatory power for image13

representation, rather than using hand-crafted image descriptors. Currently, in14

the context of 3D shape recognition, shape descriptors are mainly hand-crafted15

and deep learning representation has not been widely applied. It seems that16

it is hard to directly apply deep learning methods to 3D shape representation,17

since deep learning methods need a large amount of data to bridge the visual18

gap among training examples from the same object category; and it is unlikely19

to learn a good representation using a few data with large visual variation.20

The above developments of deep learning are in a supervised way and are21

not suitable for retrieval task. From the aspect of unsupervised deep learning,22

Hinton and Krizhevsky [4] proposed the autoencoder algorithm with the appli-23

cation of image retrieval, which is then used for some other specific tasks like24

face alignment [5]. Training autoencoder does not require any label informa-25

tion. The autoencoder can be regarded as a multi-layer sparse coding network.26

Each node in the autoencoder network can be regarded as a prototype of object27

image/shape. From the bottom layer to the top layer, the prototype contain-28

s richer semantic information and becomes a better representation. After the29

autoencoder network is learnt, the coefficients obtained by reconstructing im-30

age/shape based on prototypes are used as feature for 3D shape matching and31

retrieval. Since the autoencoder can learn feature adaptively to training data,32

it can get excellent performance for image retrieval.33

Motivated by the view-based 3D shape methods [6, 7], in which a 3D shape34

can be projected into many 2D depth images, we aim to use autoencoder to learn35

a 3D shape representation based on the depth images obtained by projection. As36

shown in Fig. 1, a 3D shape is projected into many different depth images; the37

learnt autoencoder can reconstruct the depth images nicely. Matching 3D shape38

based on the autoencoder features can be converted to a set-to-set matching39

problem, conventional set-to-set distance, like the Hausdorff distance, can be40

adopted. Our autoencoder based 3D shape representation is a deep learning41

representation; compared to the representations based on local descriptor, e.g.42

SIFT, it is a global representation. This global deep learning representation and43

the representation based on local descriptors are complementary to each other.44

In summary, the main contributions of this paper are: (1) A new method to45

learn deep learning representation for 3D shape using autoencoder; (2) combin-46

ing the global deep learning representation with local descriptor representation47

and obtaining the state-of-the-art 3D shape retrieval performance.48

The remainder of this paper is organised as follows: In Section 2, we offer49

an overview of the previous work on the content-based 3D shape retrieval. In50

Section 3, we present an explicit description of our method to extract the global51

features of 3D shape. In Section 4, we briefly depict the local descriptor formerly52

implemented in [8] on 3D shape. Experimental results and extensive evaluation53

are then carried out in Section 5. At last, we conclude this paper in Section 6.54
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Figure 1: A specific illustration of our method to reconstruct 2D images. Note that the first
row displays the original depth images in gray-scale of the 3D shape, while the second row
shows the reconstructed ones corresponding to the images of the first row. And the black dots
indicates those extracted from other different views.

2. Related Work55

Based on the main idea that “two 3D models are similar if they look sim-56

ilar with each other from all viewing angles”, there are plenty of view-based57

approaches that have been regarded as the most discriminative methods on lit-58

erature [9]. Since our shape descriptor is also view-based, we mainly discuss59

some effective, competing view-based approaches during the following part.60

In [10], Cyr and Kimia recognized a 3D shape by comparing a view of the61

shape with all views of 3D objects using shock graph matching. Osada et al. [11]62

proposed the shape distribution descriptor that measures properties based on63

area, angle, distance and volume measurements between a random set of points64

on the object. The similarity between two objects is defined by suitable shape65

functions, e.g. the D2 function. Ohbuchi et al. [8] utilized local visual features by66

using the Scale Invariant Feature Transform (SIFT) [12] to retrieve 3D shapes.67

A host of local features describing the 3D models is integrated into a histogram68

using Bag-of-Features [13] to reduce the computation complexity. Vranic [14] p-69

resented a composite 3D shape feature vector (DESIRE) which consists of depth70

buffer images, silhouettes and ray-extents of a polygonal mesh. The composite71

of various feature vectors extracted in a canonical coordinate frame generally72

performs better than the single method which relies on pairwise alignment of 3D73

objects. Later on, Papadakis et al. [15] made use of a hybrid descriptor (Hybrid)74

which consists of both depth buffer based 2D features and spherical harmonies75

based 3D features. The Hybrid adopts two alignment methods to compensate76

inner rotation variance and then uses Huffman coding to further compress fea-77

ture descriptors. Also, they presented a 3D descriptor (PANORAMA) [16] that78

captures the panoramic view of a 3D shape by projecting it to a lateral surface79

of a cylinder parallel to one of its three principal axes. By aligning its princi-80
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ple axes to capture the global information and combining 2D Discrete Fourier81

Transform and 2D Discrete Wavelet Transform, the PANORAMA outperforms82

all the other 3D shape retrieval methods on several standard 3D benchmarks.83

Meanwhile, Lian et al. [7] used Bag-of-Features and Clock Matching (CM-BoF)84

on a set of depth-buffer views obtained from the projections of the normalized85

object. The CM-BoF method also takes advantage of the preserved local details86

as well as isometry-invariant global structure to reach a competing result. Prior87

to that, they also proposed a shape descriptor named Geodesic Sphere based88

Multi-view Descriptors (GSMD) [17] measuring the extend to which a 3D poly-89

gon is rectilinear based on the maximum ratio of the surface area to the sum90

of three orthogonal projected areas. Recently, Bai et al. [18] adopted contour91

fragments as the input features for learning a BoW model, which is general and92

efficient for both 2D and 3D shape matching.93

Among the view-based 3D shape retrieval methods, the Light Field descrip-94

tor (LFD) [6] may be the most famous approach. The extraction of LFD begins95

with the scale and translation normalization while achieving rotation invariance96

via an exhaustive searching from a great many of views. Then the silhouette pro-97

jections, rendered from uniformly sampled positions on a unit sphere, are repre-98

sented by 10 Fourier coefficients [19] and 35 Zernike moments coefficients [20].99

Finally, the dissimilarity between two objects is measured by the minimum100

distance of all group matching pairs. The LFD is insensitive to similarity trans-101

form, geometry degeneracy and noise, etc, thus shows better performance than102

other competing approaches.103

3. Deep Learning Representation using Autoencoder104

In this Section, given a 3D shape model S, we show how to perform au-105

toencoder initialized with deep belief network for S and then conduct 3D shape106

retrieval based on the calculated shape code. As shown in Fig. 2, we illustrate107

a specific flow chart about the whole procedure.108

Figure 2: The flow chart of 3D shape representation using autoencoder. First, we conduct
pose normalization for differences in translation and scale to each 3D model. Next, each 3D
shape is represented by a set of depth-buffer images. Finally all the projections are used to
train the autoencoder to acquire the code as a low-dimensional representation of the depth
images, based on which to conduct 3D shape retrieval. In the last image, the colored dots
indicate those features extracted from the corresponding depth images.
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3.1. Depth Projection Image109

Different from shapes of 2D images, 3D models represent the 3D objects
using a collection of points in 3D space, connected by various geometric entities
such as lines, curved surfaces, etc. In our method, the autoencoder initialized by
a DBN described in Section 3.2 is used to reconstruct the gray-scale depth 2D
images as input and acts as a low-dimensional coding method. Thus, projecting
a 3D model to a collection of 2D images is required to make it possible. For a
3D shape model S preprocessed by scale and translation normalization, from a
host of angles of view, we collect 2D projections set of S defined as

P(S) = {V1,V2, . . . ,VNp}, (1)

where Np denotes the number of projections for each model.110

More specifically, Fig. 3 illustrates how we obtain a series of projections for111

the shape S viewed from different angles both in azimuth and elevation.112

3.2. Deep Belief Network113

The deep belief network (DBN) [21, 22, 23] is a generative graphical model,114

or alternatively a type of deep neural network, composed of multiple layers115

of latent variables (“hidden units”), with connections between the layers but116

not between units within each layer. When trained on plenty of examples in117

an unsupervised way, a DBN can probabilistically reconstruct the inputs by118

learning a stack of Restricted Boltzmann Machines (RBMs), where each of the119

previous RBM’s hidden layer serves as the visible layer for the next. That is120

to say, each time a new RBM is added to the stacked structure of DBN, then121

the new DBN has a better variational lower bound in the log probability of the122

data than the previous DBN [4].123

Figure 3: The illustration of how we get the projections of a 3D shape model S. Azimuth is
the polar angle in the x-y plane, with positive number indicating anticlockwise rotation of the
viewpoint. As for elevation, positive and negative numbers are the angle above and below the
x-y plane respectively.

We introduce the “pretraining” procedure as shown in Fig. 4 for binary
units, then generalize to real-valued units and show that it works well. The
pixels correspond to the “visible units” since their states can be observed; as
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Figure 4: A graphical description of RBM. Note that a standard type of RBM has binary-
valued visible and hidden units with weights of the connection between them. What needs
to be specially emphasized is that there are none connections within visible units or hidden
ones, which leads to a property that the hidden unit activations are mutually independent
given the activations of visible units and conversely.

for the feature detectors, they correspond to the “hidden units”. The energy of
a joint configuration (v,h) for the visible and hidden units is defined in [24] as

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

wijvihj , (2)

where vi, hj denote the binary states of visible unit i and hidden unit j respec-124

tively; ai, bj are their biases and wij is the connection weight between them.125

The network assigns a probability to every possible couple of a visible vector
and a hidden one by the following function

p(v,h) =
1

Z
e−E(v,h), (3)

where the “partition function” Z is given by the sum of all possible pairs between
visible and hidden vectors

Z =
∑
v,h

e−E(v,h). (4)

The probability that the network assigns to a visible vector, is defined as the
sum of all possible hidden vectors

p(v) =
1

Z

∑
h

e−E(v,h). (5)

The probability of a training image can be increased by adjusting the biases
and weights to lower the energy of that image but to increase the energy of the
rest, especially for these that own low energy and thus are assigned high prob-
ability by the network and make great contribution to the partition function.
The mathematically derived derivative of the log probability of a visible vector
to a weight is simple:

∂ log p(v)

∂wij
= 〈vihj〉data − 〈vihj〉model, (6)
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where the angle brackets denote expectations under the exact distribution spec-
ified by the subscript that follows. Thus, utilizing stochastic gradient descent
as the learning approach is a very simple way in the log probability of training
data

∆wij = ε(〈vihj〉data − 〈vihj〉model), (7)

where the ε is the learning rate.126

Because of the RBM’s restricted structure that there are no direct connec-
tions within hidden units, it is pretty easy to obtain an unbiased sample of
〈vihj〉data. Given a training image as the visible vector v, the binary state hj
of every hidden unit j is set to 1 with the probability

p(hj = 1 | v) = S(bj +
∑

i∈visible

wijvi), (8)

where S(x) denotes the sigmoid function defined by the formula 1/[1+exp(−x)].127

Given a hidden vector h, it is also quite easy to obtain an unbiased sample
of a visible unit’s state as a consequence of no connections within visible units.
The first equation corresponds with the construction of binary visible units and
the second one with linear visible units, where N(µ, σ) is a Gaussian with mean
value µ and standard deviation σ.

p(vi = 1 | h) = S(ai +
∑

j∈hidden

wijhj), or

vi = N(ai +
∑

j∈hidden

wijhj , 1).
(9)

Obtaining an unbiased sample of 〈vihj〉model, however, is much more tough.128

It can be done by beginning with any random state of a visible vector and129

performing alternating Gibbs sampling for quite a long time. One iteration of130

Gibbs sampling is used to update all the hidden units in parallel applying (8)131

followed by updating all the visible units in parallel applying (9).132

Fortunately, a much faster learning algorithm was proposed in [25]. This al-
gorithm begins by setting the visible units’ states to a training vector. Then the
whole hidden units’ binary states are calculated in parallel applying (8). After
those binary states have been probabilistically chosen for the hidden units, a
“confabulation” is produced via setting each visible unit vi to 1 with probability
as in (9). Update the states of the hidden units once more in order that they
can represent features of the confabulation. Then the adjustment of the weight
is formulated by

∆wij = ε(〈vihj〉data − 〈vihj〉recon), (10)

where the 〈vihj〉data is the fraction of times that the visible unit i and the hidden133

unit j are on together when the hidden units are driven by data, and 〈vihj〉recon134

is the corresponding part given by the confabulation. A same learning rules is135

used to adjust the biases.136

In our experiments, this fast learning procedure works out well even though137

it is just approximating the derivative of the log probability with respect to the138

training data.139

7



3.3. Fine-tuning the Autoencoder140

After pretraining a DBN which acts as initialization of an autoencoder, a141

global fine-tuning procedure replaces the former stochastic, binary activities142

with crucial, real-valued probabilities and uses backpropagation through the143

whole structure of autoencoder to adjust the weights as well as biases for a144

reconstruction model. By minimizing the root mean squared reconstruction145

error
√∑

i(〈vi〉data − 〈vi〉recon)2, we finally obtain a deep-structured, optimal146

reconstruction model of the 2D depth images as input.147
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Figure 5: Details of autoencoder implemented on depth images. The circles enclosed by rect-
angle in each layer denote the units with various filling colour indicating different probability
that the network assigns to them, and the rectangle’s length corresponds to the relative size of
dimension on that layer. As we can see, the reconstruction performance becomes much better
after doing the fine-tuning procedure compared to the only pretraining procedure done, which
ensures the low-dimensional code layer being a good representation of the 2D image and has
a great influence on the retrieval results.

To sum up, the whole autoencoder system is depicted in Fig. 5. Pretraining148

consists of a stacked RBMs where the hidden units in the previous layer acts as149

the visible units of the next layer. Then the “unfolded” autoencoder initialized150

by DBN is fine-tuned to obtain a better reconstruction performance. Finally,151

the code layer that is an efficient representation of the input image is utilized152

to conduct 3D retrieval.153

3.4. Set-to-Set Distance154

After projecting 3D model and then reconstructing 2D depth images, we get
a low-dimensional representation of S with a code set C

C(S) = {
−→
C1,
−→
C2, . . . ,

−−→
CNp}, (11)
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where Np denotes the number of projection images of each model; and
−→
Ci (i =

1, 2, . . . , Np) denotes the coding vector corresponds to the projection Vi with
respect to that shape model S, defined by

−→
Ci = (ci1, ci2, . . . , ciNc), (12)

where Nc denotes the dimensionality of every code vector; cij is the value of155

j-th dimensionality corresponding to code vector
−→
Ci.156

Based on the effective and efficient autoencoder, we can obtain the quantified
distance within each 3D model by defining specific distance method given any
two shape model SA and SB , whose code sets are as follows

C(SA) = {
−−→
CA1 ,

−−→
CA2 , . . . ,

−−−→
CANp

}

C(SB) = {
−−→
CB1

,
−−→
CB2

, . . . ,
−−−→
CBNp

},
(13)

where Ai and Bi denote the i-th projection index of model SA, SB respectively.157

We use one variant of “Hausdorff Distance” to define the distance of SA to
SB , given by

D(SA, SB) =
1

Np

Np∑
i=1

min
j
d{
−−→
CAi ,

−−→
CBj}, (14)

where d{
−−→
CAi

,
−−→
CBj
} denotes one specific distance function between two vector,158

such as p-norm distance in “Euclidean Space”, algebraic distance, etc. Depend-159

ing on the distance of any two models, shape retrieval could be directly done160

according to the ranked list.161

4. Bag of Features Representation162

In this Section, we describe the local descriptor formerly implemented by163

Ohbuchi et al. [8] on 3D shape. Considering that our method autoencoder164

mentioned above is a global descriptor, it is much reasonable to boost a better165

performance if combining with a local descriptor. Bag-of-Features using Scale-166

invariant feature transform (BoF-SIFT) model is selected as the local description167

for a 3D model. Different from previous work in [8] that considers the SIFTs168

of each depth image separately, we put all SIFTs in a single bag, i.e., rotation169

normalization is not conducted.170

We first learn the visual word vocabulary with size of 1500 in a randomly171

selected subset of all features via K-means off-line. In order to encode the set of172

SIFTs in each 3D model, we conduct Vector Quantization proposed in [26] to get173

a histogram representation that counts the number of SIFTs belonging to each174

visual word. Before computing the pairwise distance among the models, all the175

histogram is L1 normalized. We will display the good property of extraordinary176

complementarity between autoencoder and BoF-SIFT in Section 5.177
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5. Experiments178

In this Section, we test our method on two widely used, standard datasets179

of 3D shapes and compare our results with the-state-of-the-art approaches for180

3D shape retrieval. The algorithm is implemented in MATLAB and experi-181

ments are carried out on a laptop machine with Intel(R) Core(TM) i5-3210M182

CPU(2.5GHz) and 4GB memory.183

5.1. Princeton Shape Benchmark (PSB)184

The Princeton Shape Benchmark [9] dataset provides a repository of 3D185

models and software tools for comparing different shape-based models. It’s186

created to promote the use of standardized datasets and evaluate methods for187

research in matching, classification, clustering, and recognition of 3D models.188

Each model of the 3D shape consists of the polygonal geometry surface of the189

corresponding shape. There are totally 1814 models and the base classification190

is partitioned equally into training and testing sets. The training set with191

90 classes, 907 models is used to attain parameters of shape models through192

training procedure, while the other with 92 classes, equal number of models for193

comparison with other algorithm. In addition, the number of models belonging194

to the same class in the base classification varies from each class and ranges from195

4 to 50. Some 3D models from the PSB are randomly selected to be exhibited196

in Fig. 6.197

Figure 6: Exemplar images randomly chosen from the PSB dataset. The base classification
spans a large various of classes including animals, buildings, etc.

5.2. Engineering Shape Benchmark (ESB)198

The Engineering Shape Benchmark [27] is particularly proposed to evalu-199

ate shape-based searching methods relevant to the mechanical engineering do-200

main. More specifically, the ESB dataset has totally 867 3D CAD models clas-201

sified into 45 classes with the number of models ranging from 4 to 58 in a class.202

The 3D models contained in the ESB cover a wide variety of real-world engi-203

neering models so that different methods can compete with each other more204

fairly. As shown in Fig. 7, we randomly select some models in the ESB to show205

engineering properties of the models.206
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Figure 7: Exemplar images randomly chosen from the ESB dataset. Compared to the PSB
dataset, all of the models contained in the ESB are mechanical engineering objects (parts)
such as bearing assemblies, spacer, spinner, etc.

5.3. Implementation Details207

As described in Section 3.1, we set the number of each model’s projection to208

64 (8× 8) on the dataset. Then the total raw gray-scale images with real value209

in the range of [0, 1], preprocessed by transform invariant low-rank textures210

(TILT) [28] to eliminate the large orientation variance, served as the visible211

units of the DBN’s first layer.212

More specifically, the visible units of the first RBM layer were the normalized213

value of the depth images’ pixels. When training higher level layer, the visible214

units of a RBM were set to the activation probabilities of the previous RBM’s215

hidden units. As for the hidden units, they had stochastic binary value except216

the top layer’s hidden units, which had stochastic real-valued states calculated217

from the unit standard deviation Gaussian whose mean value was defined by218

the input from that RBM’s logistic visible units. The real-valued states are in219

the range [0, 1], compared to the binary states either 0 or 1, allowed the low-220

dimensional codes to take good advantage of continuous data and could avoid221

unnecessary sampling noise. Note that we trained each RBM for 40 epochs using222

mini-batches of size 100 and adopted a learning rate of 0.1 for the linear-binary223

RBMs, 0.001 for the top layer RBM.224

With the DBN structure constructed, we initialized an autoencoder with225

the weights trained from the DBN and fine-tuned them using backpropagation226

as described in Section 3.3. The autoencoder consisted of an encoder with the227

designed layers and a symmetric structure for the decoder. The hidden units228

in the last layer were linear while all the other units were logistic. The deep,229

well-trained autoencoder was able to find how to convert each depth image230

into low-dimensional code that leads to a discriminative description and well231

reconstruction.232

Then all the parameters including weights and biases are well-trained in233

an unsupervised way, we used them to obtain the low-dimensional code for234

projections of 3D models on the dataset. For the PSB, we constructed an235

encoder with the layers structure of 5184 (72 × 72)-1000-500-250-30 while a236
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structure of 5184 (72 × 72)-2000-500-100-20 for the ESB. In addition, we only237

used the testing set to both train the parameters and evaluate our results for238

the PSB while experiments were done on the whole dataset of the ESB since it239

provides no training set or testing set.240

Finally, we define the distance function as mentioned in Section 3.3 as

d{
−−→
CAi

,
−−→
CBj
} = ‖

−−→
CAi
−
−−→
CBj
‖
p
, p = 2, (15)

where ‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p , please note that x is a vector in the241

n-dimensional real vector space <n.242

5.4. Evaluation Methods243

In this Section, we introduce statistical description for the retrieval perfor-244

mance of a specific algorithm. The PSB provides open source code for evaluating245

different algorithms and judging how well one algorithm is compared to others.246

Thus, the performance can be fairly judged by the same evaluation tools in247

varieties of perspectives. When any doubt comes to you, please refer to [9] for248

more details about definition of every evaluation method.249

Nearest Neighbor (NN): the percentage of the closest matches that be-250

long to the same class as the query. This statistic offers us an indication of how251

well a nearest neighbor classifier could perform. As we can see, higher score252

represents better performance.253

First-Tier (FT) and Second-Tier (ST): the percentage of models in the254

query’s class that appear within the top M matches. where M is determined255

by the size of the query’s class. Given that the query’s class owns C models,256

M = C − 1 for the first-tier and M = 2(C − 1) for the second tier.257

The three statistics mentioned above put emphases upon different aspects.258

The Nearest Neighbor (NN) evaluation merely lays emphasis on the discrimina-259

tive ability since it only accounts for the most similar one in the retrieved, sorted260

list. However, the First-Tier (FT) and Second-Tier (ST) indicate how well the261

average performance of an algorithm taking into consideration the tradeoff be-262

tween intra-class variation and inter-class discrepancy.263

5.5. Retrieval Results264

As shown in Table 1 and 2, we compare the global-feature-based autoencoder265

with the other global descriptors on the two standard datasets to explore the266

efficacy of using autoencoder to tackle 3D shape retrieval.267

We come to a solid conclusion that the autoencoder is more efficient than268

the other global-features-based methods for 3D shape retrieval.269

5.6. Complementary Property270

We adopt autoencoder described in Section 3 to obtain the distance between271

any two shape models on the dataset. Then we get the retrieval results eval-272

uated by the source code provided in the PSB [9]. Furthermore, based on the273

knowledge that autoencoder reconstructs global information while BoF-SIFT274
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Table 1: Statistic evaluation of global descriptors on Princeton Shape Benchmark

Algorithm NN(%) FT(%) ST(%)

Autoencoder 72.4 43.3 54.6
GSMD [17] 67.1 41.8 52.0
DESIRE [14] 65.8 40.4 51.3

LFD [6] 65.7 38.0 48.7

Table 2: Statistic evaluation of global descriptors on Engineering Shape Benchmark

Algorithm NN(%) FT(%) ST(%)

Autoencoder 85.7 47.9 63.1
Hybrid [15] 82.9 46.5 60.5
DESIRE[14] 82.3 41.7 55.0
LFD [6] 82.0 40.4 53.9

described in Section 4 captures the local details, a linear combination of them is275

proposed to boost the retrieval performance. More specifically, we empirically276

choose the weights as Wglobal = Wlocal for global and local descriptors.277

Table 3: Statistic evaluation on Princeton Shape Benchmark

Algorithm NN(%) FT(%) ST(%)

Autoencoder+BoF-SIFT 77.5 52.4 65.4
BoF-SIFT [8] 71.4 45.1 57.6

CM-BoF+GSMD [7] 75.4 50.9 64.0
PANORAMA [16] 75.3 47.9 60.3

CM-BoF [7] 73.1 47.0 59.8

We compare our hybrid method (Autoencoder+BoF-SIFT) with the previ-278

ous state-of-the-art methods including PANORAMA, CM-BoF and CM-BoF+GSMD,279

which are able to capture both the global and local information of a 3D shape.280

For the retrieval results displayed in Table 3 on the PSB dataset, we can find281

that: our autoencoder shows pretty well complementary property with the ex-282

isting local-features-based method BoF-SIFT, whose retrieval results of FT and283

ST are both improved by more than 7 percent.284

Furthermore, Fig. 8 shows a precision-recall plot of six methods on the PSB285

and ESB dataset respectively. Among all the methods, the composite of autoen-286

coder and BoF-SIFT achieves the best performance. The proposed autoencoder287

consistently outperforms other global-descriptors-based methods.288

6. Conclusions289

In this paper, we present a novel view-based 3D shape retrieval method using290

autoencoder, which is firstly utilized to 3D shape retrieval. A set of experiments291
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Figure 8: Precision-recall curves of nine methods implemented on two standard benchmarks.
(a), (b) illustrates the results evaluated on the PSB and ESB respectively.

were carried out to investigate the effectiveness and efficiency of our method292

on two standard datasets, which shows that the autoencoder outperforms other293

global descriptor on retrieval results. Furthermore, the experiments demonstrate294

that the autoencoder displays good complementarity with the local descriptor,295

for linearly combing them achieves the state-of-the-art performance. Our future296

work might focus on studying the effect of the proposed representation with297

context-based shape similarity method [29].298
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